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We study the number of determining modes necessary for continuous data
assimilation in the two-dimensional incompressible Navier–Stokes equations.
Our focus is on how the spatial structure of the body forcing affects the rate of
continuous data assimilation and the number of determining modes. We treat
this problem analytically by proving a convergence result depending on the H−1

norm of f and computationally by considering a family of forcing functions
with identical Grashof numbers that are supported on different annuli in
Fourier space. The rate of continuous data assimilation and the number of
determining modes is shown to depend strongly on the length scales present in
the forcing.
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1. INTRODUCTION

In the late 1960s satellite-borne observation systems began producing data
on the climate that was nearly continuous in time. Charney, Halem, and
Jastrow proposed in ref. 5 that the equations of the atmosphere themselves
be used to process this data and obtain improved estimates of the current
atmospheric state. Their method, called continuous data assimilation, is to
insert the observational measurements directly into a model as the latter is



being integrated in time. A summary of the use of continuous data assi-
milation in practical weather forecasting appears in Daley. (12)

Let u1(t) represent physical reality at time t. We represent the obser-
vational measurements corresponding to u1(t) at time t by Plu1(t), where
Pl is a finite-rank orthogonal projection. Here l represents a parameter,
namely the resolution of the measuring equipment, that will be made
precise later. Let u2(t) be the approximation to u1(t) obtained from con-
tinuous data assimilation of the observational measurements Plu1(y) over
the time interval y ¥ [0, t]. We will describe the details of constructing u2(t)
later. Our goal is to find conditions on l in terms of the other physical
parameters of the system which guarantee that u2(t) will converge to u1(t)
as t Q .. Note that we assume the idealized situation in which the obser-
vational measurements Plu1(t) are error free; therefore, there is no need for
the additional filtering necessary in applications.

Inspired by the work of Browning et al. (2) and motivated by applica-
tions involving the full dynamics of the atmosphere, we study continuous
data assimilation in the simpler case of a viscous two-dimensional incom-
pressible fluid in a periodic domain. Thus, we take the physical reality u1(t)
to be the exact solution of the two-dimensional incompressible Navier–
Stokes equations

“u1

“t
+(u1 · N) u1 − n Du1+Np1=f, N · u1=0 (1.1)

with initial conditions u1(0)=u0 on the L-periodic torus W=[0, L]2. Here
u1 represents the Eulerian velocity field, n the kinematic viscosity, f a body
forcing, and p1 the physical pressure.

It is clear from (1.1) that if >W u0=0 and >W f=0, then >W u1(t)=0
for all time. Therefore, we consider only solutions with zero mean. It
follows that at any time t the velocity field, the body forcing, and the pres-
sure may each be represented by a Fourier series of the form

a= C
k ¥ J

âkfk, where J=32pm
L

: m ¥ Z2 0{0}4 , (1.2)

fk(x)=e ik · x and âk=â−k. Note that the Fourier coefficients corresponding
to the velocity and the forcing are C2-vector valued such that k · âk=0
whereas the coefficients corresponding to the pressure are scalar. Define
the L2 and H1 norms

|a|=L 3 C
k ¥ J

|âk |241/2

and ||a||=L 3 C
k ¥ J

|k|2 |âk |241/2

. (1.3)
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The Fourier space representation provides a convenient way of
describing the orthogonal projections needed for our study. For a such that
|a| < . we define

Pla= C
|k|2

[ l

âkfk and Ql=I − Pl. (1.4)

Thus, for the projection Plu1(t) given above, the quantity l−1/2 represents
the smallest length scale of the fluid which can be observed—the resolution
of the presumed measuring equipment. Note that l and the rank N of Pl

are essentially proportional in two dimensions.
In light of the results on determining projections postulated by Foias

and Temam in ref. 25 and proven in refs. 6, 7, and 28, similar results to
those we shall present here are likely to hold for any family of projections
Pl for which there exists constants C1 and c > 0 not depending on the rank
N of Pl such that |u − Plu| [ C1N−c ||u|| for all u such that ||u|| < .. See also
refs. 8 and 32. Further work along these lines appears in ref. 4 for the
physically relevant model consisting of the two-dimensional Navier–Stokes
equations on the surface of a rotating sphere.

Let us agree that if we were given u0 exactly, that is, the detailed
reality at time t=0, then we could integrate the Navier–Stokes equations
and hence get u1(t) exactly for any t > 0. Therefore, the main difficulty is
that we can not obtain u0 exactly by measurement. However, we can obtain
Plu1(t) over as large an interval in time as needed. The question becomes,
how do we find u1(t) from Plu1(t). In general this is not possible, so alter-
natively, let us find u2(t), a good asymptotic approximation of u1(t).

To motivate finding u2(t) let us rewrite the Navier–Stokes equations
(1.1) as a system of two coupled differential equations. Let u i=pi+qi

where pi=Plu i and qi=Qlu i for i=1, 2. Since Pl and Ql project onto
eigenfunctions of the D operator they commute with it. Similarly Pl and Ql

commute with the divergence and the gradient. Thus, projecting (1.1) by Pl

and then by Ql gives

˛“p1

“t
+Pl{(p1+q1) · N(p1+q1)} − n Dp1+NPlp1=Pl f, N · p1=0

“q1

“t
+Ql{(p1+q1) · N(p1+q1)} − n Dq1+NQlp1=Ql f, N · q1=0.

Since p1(t) is given directly by measurement, we need only integrate
the second equation to find u1(t). However, since we do not know q1(0)
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integrating the second equation is impossible. Therefore, we compute an
approximation q2(t) of q1(t) by integrating

“q2

“t
+Ql{(p1+q2) · N(p1+q2)} − n Dq2+NQlp2=Ql f, N · q2=0 (1.5)

with initial conditions q2(0)=g where g=Qlg represents an initial guess of
the high modes q1(0) of the exact solution. Hence, the problem for us is a
problem of initialization, and we solve it by initializing the high frequencies
any way we want and then integrating.

In the numerical part of this paper we simply take g=0, however, an
initial approximation of q1(0) might be more reasonably obtained by
taking g=QlF(p1(0)) where F is an approximate inertial manifold for the
two-dimensional Navier–Stokes equations. More information on approx-
imate inertial manifolds and their applications may be found in Debussche
and Marion, (13) Devulder and Marion, (14) Dubios et al., (17) Foias et al., (19, 20)

and refs. 15, 18, 23, 30, 42, and references therein.
A systematic computational study of continuous data assimilation

in decaying two-dimensional turbulence was first performed by Browning
et al. (2) In ref. 2, computations were done on the 2p-periodic torus with
viscosity n=10−5, forcing f=0 and g=0. First, a highly accurate refer-
ence calculation was made to obtain the solution u1(t) of (1.1) starting
from prescribed initial conditions u0 such that |u0 |=1. The observational
measurements Plu1(t) were saved and subsequently used for assimilation
into a second calculation to obtain u2(t). Notice that since the forcing is
zero, both u1 and u2 eventually converge to zero. However, short time
transient behavior may be studied, for example, by monitoring the relative
error |u1(t) − u2(t)|/|u1(t)|. Under these conditions, it was observed in ref. 2
that continuous data assimilation of the 64 lowest Fourier modes of u1 was
sufficient to accurately reconstruct the small scales of u1, but assimilation
of the 16 lowest modes was not. A similar study of decaying three-dimen-
sional turbulence was recently completed by Kreiss and Yström in ref. 33.
In this paper we generalize ref. 2 by considering a nonzero body forcing f
to avoid the difficulties of u1 and u2 decaying to zero.

Continuous data assimilation is essentially the simplest algorithm for
constructing an approximate solution u2 suitable for treatment by the
theory of determining modes of Foias and Prodi. (22) In this context it is
necessary to view u2 as a solution to a modified two-dimensional Navier–
Stokes equations. This may be done by adding the evolution equations for
p1(t) to the evolution equations for q2(t). Thus, we obtain

“u2

“t
+(u2 · N) u2 − n Du2+Np2=f2, N · u2=0 (1.6)
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with initial conditions u2(0)=Plu0+g where g=Qlg and

f2=f+Pl{(u2 · N) u2 − (u1 · N) u1}. (1.7)

Note that f2 is a complicated time-dependent feedback forcing function
that depends on u2 to ensure that Plu1(t)=Plu2(t) for all time t \ 0.

The theory of determining modes, however, makes no assumptions on
how u2 was obtained. So, for a moment, let us forget that u2 was con-
structed by continuous data assimilation and simply suppose it to be
another solution to the Navier–Stokes equations with a given time depen-
dent forcing f2(t). To avoid possible confusion we shall refer to indepen-
dent solutions of the standard incompressible two-dimensional Navier–
Stokes equations (1.1) by v1 and v2 and their corresponding forcing func-
tions by g1 and g2 when discussing the general theory of determining
modes.

Definition 1.1. The number of determining modes is the rank of the
smallest projection Pl such that for any two solutions v1 and v2 of (1.1) the
convergence |Plv1(t) − Plv2(t)| Q 0 as t Q . guarantees that |v1(t) − v2(t)|
Q 0 as t Q .. We denote by lc the smallest value of l such that the rank of
Pl is equal to the number of determining modes Nc.

It was first shown in ref. 22 that the two-dimensional Navier–Stokes
equations possess a finite number of determining modes. At about the same
time a result more directly related to continuous data assimilation was
independently proved by Ladyzhenskaya. (35) It is clear that the number of
determining modes should depend on the forcing, the viscosity, and the size
of the domain. In ref. 43 Trève and Manley gave a physical argument
relating the number of determining modes in Rayleigh–Bénard convection
to the Rayleigh number divided by the Prandtl number. By identifying the
buoyancy force in Rayleigh–Bénard convection with the body forcing in
the Navier–Stokes equations this lead to

Definition 1.2. The Grashof number is defined as

Gr(f)=(L/2pn)2 lim sup
t Q .

|f(t)|.

The first reasonable rigorous estimate on the number of determining modes
in terms of the Grashof number was provided by Foias et al. (21) It was
observed by Foias and Temam in refs. 24 and 31 that the theory of deter-
mining modes can be extended to families of Navier–Stokes equations with
asymptotically equivalent body forcing. This is of particular interest to us,
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since the forcing function f2 in continuous data assimilation is not equal
to f. The best estimate to date in the periodic case is given in ref. 32 which
we shall restate here as

Theorem 1.3. Let v1 and v2 be two solutions of the two-dimen-
sional Navier–Stokes equations on the L-periodic torus with corresponding
forcing functions g1 and g2 and possibly different initial conditions. Then
there exists a constant c1 independent of n, L, gi, or of any initial condi-
tions such that for every l(L/2p)2 > c1 Gr(g1) the limits

|g1(t) − g2(t)| Q 0 and |Plv1(t) − Plv2(t)| Q 0 as t Q .

imply that

||v1(t) − v2(t)|| Q 0 as t Q ..

Before proceeding, let us first note that a minor modification of the
proof of Theorem 1.3 presented in ref. 32 allows us to relax the hypothesis
on g1 and g2. In particular, it is sufficient to require in Theorem 1.3 that
|Ql g1(t) − Ql g2(t)| Q 0 as t Q .. The intuitive reason for this is clear.
Since the difference of the low modes of v1 and v2 is already controlled by
hypothesis and converge to zero, then all we need to show is that the dif-
ference of the high modes of v1 and v2 converge to zero. Therefore only the
difference of the high modes of g1 and g2 need enter into the proof. In light
of this observation, Theorem 1.3 may be rewritten as

Theorem 1.4. Let v1 and v2 be two solutions of the two-dimen-
sional Navier–Stokes equations on the L-periodic torus with corresponding
forcing functions g1 and g2 and possibly different initial conditions. Then
there exists a constant c1 independent of n, L, gi, or of any initial condi-
tions such that for every l(L/2p)2 > c1 Gr(g1) the limits

|Ql g1(t) − Ql g2(t)| Q 0 and |Plv1(t) − Plv2(t)| Q 0 as t Q .

imply

||v1(t) − v2(t)|| Q 0 as t Q ..

Thus, we may choose the low modes of g1 and g2 to be anything we
like provided this choice ensures |Plv1(t) − Plv2(t)| Q 0 as t Q .. In the
case of continuous data assimilation we note that |Ql g1(t) − Ql g2(t)|=
|Ql f1(t) − Ql f2(t)|=0 and |Plv1(t) − Plv2(t)|=|Plu1(t) − Plu2(t)|=0 for
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all time t \ 0. Therefore, given l > c1 Gr(f) and provided that the solution
u2(t) to (1.6) exists, it follows that ||u1(t) − u2(t)|| Q 0 as t Q .. In particu-
lar, continuous data assimilation works for l large enough.

We begin our study of how the convergence of u2 to u1 is affected by
the spatial structure and length scales present in the forcing f by consid-
ering the time-independent forcing functions

G(R)={f: Gr(f)=R}.

Given f ¥ G(R) let u1 be the corresponding solution of (1.1). Rescale this
solution as follows. Set f̃(x)=8f(2x), ũ1(x, t)=2u1(2x, 4t), p̃1(x, t)=
4p1(2x, 4t), and ũ0(x)=2u0(2x). Since f̃, ũ1, p̃1, and ũ0 are L/2-periodic,
then they are also L-periodic. Thus, we find that ũ1 satisfies

dũ1

dt
+(ũ1 · N) ũ1 − n Dũ1+Np̃1=f̃, N · ũ1=0 (1.8)

with initial conditions ũ1(0)=ũ0 on the L-periodic torus. That is, ũ1 is a
solution to the two-dimensional Navier–Stokes equations with forcing f̃.
Since |f̃|=8 |f| then f̃ ¥ G(8R). It follows that for every f ¥ G(R) there is
an f̃ ¥ G(8R) such that the corresponding solutions u1 and ũ1 have exactly
the same dynamics.

Although the L/2-periodic solutions of (1.8) comprise only a small
portion of all solutions on the L-periodic domain, the above observation
indicates that the Grashof number alone cannot determine the dynamical
complexity of the two-dimensional Navier–Stokes equations. Therefore, in
order to conduct a more detailed analysis we consider the negative Sobolev
norm or dual norm of ||f|| defined as

||f||g=L 3 C
k ¥ J

|k|−2 |f̂k |241/2

. (1.9)

As we shall see below, this norm will be useful in obtaining a determining
modes result which distinguishes between forcing functions with the same
Grashof number that are supported on different spatial length scales.
Namely, we shall prove

Theorem 1.5. Let u1(t) be a solution on the global attractor of the
two-dimensional Navier–Stokes equations (1.1) with time-independent
forcing f ¥ L2(W). Let u2(t) be the approximation to u1(t) obtained from
the continuous data assimilation (1.6) of the observational measurements
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Plu1(y) over the time interval y ¥ [0, t]. Then there are constants K1 and
K2 independent of all initial conditions such that

(i) If there exists a such that 0 < 2a [ nl − c2
1n−3 ||f||2

g, then

|u1(t) − u2(t)| [ |u1(0) − u2(0)| K1e−at for t \ 0.

(ii) If there exists a such that 0 < 2a [ nl − c2
1(n3l)−1 |f|2, then

||u1(t) − u2(t)|| [ ||u1(0) − u2(0)|| K2e−at for t \ 0.

Note that Theorem 1.5 shows that the convergence of u2 to u1 is, in
fact, exponential in time. This leads us to the following definition.

Definition 1.6. The rate of continuous data assimilation of enstrophy
is the supremum over all a such that ||u1(t) − u2(t)||=O(e−at) as t Q ..

This paper consists of analysis followed by computational results.
First we place Eqs. (1.1) and (1.6) in the appropriate functional settings
that allow rigorous mathematical analysis of their solutions. We then state
a number of important inequalities and facts that we shall need later on.
The main goal of our work is to demonstrate that there is a strong rela-
tionship between the spatial structure of f, the rate of continuous data
assimilation, and the number of determining modes in continuous data
assimilation.

Our analysis begins by showing the continuous data assimilation
equations (1.6) are globally well posed. For computational relevance we
restrict our attention to strong solutions. We then establish a number of
lemmas and eventually prove Theorem 1.5. We close with a discussion of
whether the system of equations given by (1.1) and (1.6) is dissipative.
When l=0 this system is dissipative since in this case f2=f and the
feedback term Pl{(u2 · N) u2 − (u1 · N) u1}=0. Thus u2 is a solution of the
two-dimensional Navier–Stokes equations for forcing f. For

l > min{c2
1n−4 ||f||2

g , c1n−2 |f|} (1.10)

dissipativity follows from the convergence of u2 to u1 as in Theorem 1.5.
However, for intermediate values of l the dissipativity of the continuous
data assimilation equations remains in question.

Our computational results consist of two sets of experiments. All
experiments were performed with n=0.0001 and g=Qlu2(0)=0 on
the 2p-periodic torus for forcing functions with a Grashof number of
R=250000. Guided by Theorem 1.5 we first consider time-independent

806 Olson and Titi



forcing functions f ¥ G(R) supported on an annulus in Fourier space.
Thus, f may be written

f= C
lm [ |k|2

[ lM

f̂kfk. (1.11)

with f̂k=f̂−k, k · f̂k=0, and f̂0=0. We take the width of the annulus to
be

lM − lm=4l1/2
f − 2 where lf=(lm+lM)/2.

The width of the annulus is proportional to the wave number about which
it is centered. It was shown by Constantin et al. (10) that no Kolmogorov
flow, that is no flow driven by forcing only one Fourier mode, can sustain
a Kraichnan inertial range spectrum in a statistically steady state. However,
two eigenmodes may be sufficient. When lf \ 1 our condition ensures that
f forces Fourier modes over a range of different eigenvalues. In particular,
these forcing functions generate nonlinear interactions leading to time-
dependent flows involving all the Fourier modes. This avoids the forcing
functions exhibited by Marchioro in ref. 37 which lead to steady flows
which are globally asymptotically stable for any Reynolds number. In par-
ticular, Marchioro obtains

Theorem 1.7. If f is supported on the collection of all modes in
Fourier space corresponding to the lowest eigenvalue, then the solution to
(1.1) converges to a steady flow which is globally asymptotically stable.

Constantin, Foias, and Temam give a simplified proof of this result in
ref. 11.

For any given lf let F(lf) be the set of all functions f of the form
(1.11) such that Gr(f)=R. In this way we obtain a one parameter family
of subsets F(lf) of G(R) such that each subset consists of functions
supported only on certain specified spatial length scales. For functions
f ¥ F(lf) we have that

(l1/2
f +1)−2 |f|2 [ ||f||2

g [ (l1/2
f − 1)−2 |f|2. (1.12)

Therefore, ||f||g decreases for f ¥ F(lf) as lf increases.
In our first set of experiments we vary lf from 25 through 625 and

select functions f ¥ F(lf) by choosing the amplitudes of the coefficients
f̂k in (1.11) according to a Gaussian distribution. For each function
selected, a number of continuous data assimilation experiments were con-
ducted using different values of l for the observational measurements
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Plu1(t). We measure how the rate of continuous data assimilation a

depends on the data assimilation parameter l and the forcing length-scale
parameter lf. For each forcing function f, the number of determining
modes is consequently the rank of the smallest projection Pl for which a is
clearly positive.

The results in the first half of Table I are, at first, rather surprising.
The analytical bounds in part (i) of Theorem 1.5 suggest that the number
of determining modes should decrease as lf increases; however, our com-
putations indicate that the number of determining modes actually increases
by more than an order of magnitude while lf ranges from 25 to 361. Only
for lf greater than 361 does the number of determining modes given by
our calculations reflect the decrease of ||f||g as lf increases.

Why does a flow driven by a function in F(484) require more deter-
mining modes than a flow driven by a function in F(25)? We conduct a
second set of computational experiments to shed some light on the cause
of this phenomenon. Given fL ¥ F(25) and fH ¥ F(484) we set f=
hL fL+hH fH where h2

L+h2
H=1. In this way we obtain forcing functions

supported on two disjoint annuli in Fourier space—one on small wave
numbers, the other on large. Here hL and hH are parameters determining
the relative weights of the large and small length scales in the forcing.
When hH is close to zero f may be viewed as the perturbation of the large
scales fL by the small scales fH; when hL is close to zero f is the pertur-
bation of the small scales fH by the large scales fL. We determine which
perturbation more significantly affects the number of determining modes
computationally in Table II.

As shown by the first three columns, perturbing the small scales by the
large scales has the greatest effect. This suggests that it is the absence of an
increasing number of large length scales in the forcing which is primarily
responsible for the increase in number of determining modes as lf ranges
from 25 though 361 in the first set of experiments.

We dedicate this paper to the memory of Oscar P. Manley, a good
friend and source of encouragement, whose interest and physical insight
motivated and laid the foundations for our work.

2. PRELIMINARIES

In this section we characterize the spaces H, V, and VŒ which appear in
the study of the Navier–Stokes equations and state a number of inequali-
ties and facts that we shall need later on. For further details, see, for
example, Constantin and Foias, (9) Doering and Gibbon, (16) Robinson, (39) or
Temam. (40, 41)
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First, define the spaces Va in terms of the formal Fourier series (1.2) as

Va=3u= C
k ¥ J

ûkfk : ||u||2
a < ., ûk=û−k, k · ûk=0, and û0=04

where the norm

||u||2
a=L2 C

k ¥ J

|k|2a |ûk |2. (2.1)

Note that

||u||a=sup{Ou, vP: v ¥ V−a and ||v||−a=1} (2.2)

where the pairing

Ou, vP=L2 C
k ¥ J

ûk · v̂−k.

Fourier theory implies that Va is a subspace of L2(W) for a \ 0. Further-
more, V−a may be identified with the continuous dual of Va.

A relation exists between the norms defined in (2.1) and the projec-
tions defined in (1.4) which allows us to bound the norms of Qlu and Plu
in a way that depends on the resolution parameter l. For a < b we obtain
the following version of the Poincaré inequality

||Qlu||2
a=L2 C

|k|2 > l

|k|2a |ûk |2 [
L2

lb − a
C

|k|2 > l

|k|2b |ûk |2=
1

lb − a
||Qlu||2

b, (2.3)

and for a > b we obtain the inequality

||Plu||2
a=L2 C

|k|2
[ l

|k|2a |ûk |2 [ L2la − b C
|k|2

[ l

|k|2b |ûk |2=la − b ||Plu||2
b. (2.4)

Since Ql1
u=u for l1=(2p/L)2 then (2.3) yields the usual Poincaré

inequality

||u||2
a [

1
lb − a

1

||u||2 for a < b. (2.5)

The functional spaces for solving (1.1) and (1.6) may now be defined
as H=V0, V=v1, and VŒ=V−1. Note that the norms ||u||0, ||u||1, and ||u||−1

are respectively the norms |u|, ||u||, and ||u||g given in (1.3) and (1.9). Thus,
H consists of the square-integrable functions on the L-periodic torus W
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which are divergence free and have zero mean, V are those functions in H
whose first order derivatives are also square integrable, and VŒ is the dual
of V. Moreover, by Parseval’s identity the norms on H and V may also be
expressed as |u|={>W u · u}1/2 and ||u||=|Nu|=|N × u|.

Definition 2.1. Define the Leray projector Ps: L2
Q H to be the

L2 orthogonal projection from L2 onto H. Further define A: V Q VŒ and
B: V × V Q VŒ to be the continuous extensions of the operators given by

Au=−Ps Du and B(u, v)=Ps(u · Nv)

for any suitably smooth function u. Notice that the domain D(A) of A
is V2.

For u0 ¥ V and f ¥ H we write the Navier–Stokes equations (1.1) as
the functional equation in H given by

du1

dt
+nAu1+B(u1, u1)=f (2.6)

with initial conditions u1(0)=u0. Under these hypotheses equations (2.6)
possess unique strong solutions depending continuously on the initial con-
dition u0. This is stated specifically as

Theorem 2.2. Let u0 ¥ V and f ¥ L2
loc((0, .); H). Then (2.6) has

unique strong solutions that satisfy

u1 ¥ L.((0, T); V) 5 L2((0, T); D(A)) and
du1

dt
¥ L2((0, T); H)

for any T > 0. Furthermore, this solution is in C([0, T]; V) and depends
continuously on the initial data u0 in the V norm.

A proof of this theorem can be found, for example, in any of the ref-
erences 9, 16, 39, or 40 and 41 mentioned above. In the next section we
prove a similar result for the continuous data assimilation equations (1.6)
governing the evolution of u2(t). Note that the main difficulty there lies in
controlling the feedback forcing f2.

Let us now recall some algebraic properties of the nonlinear term
B(u, v) that play an important role in our analysis. These results may be
found in any of the references 9, 16, 39, or 40 and 41. For u, v, w ¥ V we
have that

OB(u, v), wP=−OB(u, w), vP (2.7)
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and consequently

OB(u, v), vP=0. (2.8)

Furthermore, if v ¥ D(A) then

(B(v, v), Av)=0 (2.9)

and by differentiation of (2.9) we obtain

(B(u, v), Av)+(B(v, u), Av)+(B(v, v), Au)=0 (2.10)

for u, v ¥ D(A). Note that conditions (2.9) and (2.10) are valid only for the
two-dimensional Navier–Stokes equations on a periodic domain.

The nonlinear term may be estimated by Hölder’s inequality followed
by Ladyzhenskaya’s inequality. (34) In order to explicitly estimate the con-
stants appearing in our analysis we state Ladyzhenskaya’s inequality here
as

Lemma 2.3. Given u ¥ V then

||u||2
L4 [ c1 |u| ||u|| (2.11)

where c1 [ 2+(2p)−1 for the two-dimensional torus W.

With this result in hand, if u, v, w ¥ V then

|OB(u, v), wP| [ ||u||L4 ||v|| ||w||L4 [ c1 |u|1/2 ||u||1/2 ||v|| |w|1/2 ||w||1/2, (2.12)

and if u ¥ V, v ¥ D(A), and w ¥ H then

|OB(u, v), wP| [ ||u||L4 ||Nv||L4 |w| [ c1 |u|1/2 ||u||1/2 ||v||1/2 |Av|1/2 |w|. (2.13)

We end this section with some well known bounds on the time
averages of ||u1 || and |Au1 | in terms of u0 and f which will be used in the
next section.

Lemma 2.4. Let u1(t) be the unique strong solution to (2.6) with
time-dependent forcing f ¥ L2

loc((0, .); H) and initial condition u0 ¥ V.
Then

1
t

F
t

0
||u1(y)||2 dy [

1
nt

|u0 |2+
1

n2t
F

t

0
||f(y)||2

g dy (2.14)
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and

1
t

F
t

0
|Au1(y)|2 dy [

1
nt

||u0 ||2+
1

n2t
F

t

0
|f(y)|2 dy. (2.15)

Proof. The proof may be found in any of the references 9, 16, 39, or
40 and 41. For completeness, we shall present formal calculation here that
could be made rigorous if so desired.

To derive the first inequality, multiply (2.6) by u1 and use (2.8) to
obtain

1
2

d
dt

|u1 |2+n ||u1 ||2=(f, u1) [ ||f||g ||u1 ||.

Note that since u1 ¥ V and f ¥ H ı VŒ we may view f as an element of VŒ

and estimate (f, u1) by ||f||g ||u1 ||. Applying Young’s inequality gives

d
dt

|u1 |2+n ||u1 ||2 [
1
n

||f||2
g (2.16)

which upon integrating in time yields

|u1(t)|2+n F
t

0
||u1(y)||2 dy [ |u0 |2+

1
n

F
t

0
||f(y)||2

g dy.

After dropping the first term on the left, inequality (2.14) follows.
To derive the second inequality, multiply (2.6) by Au1 and use (2.9) to

obtain

1
2

d
dt

||u1 ||2+n |Au1 |2=(f, Au1).

Applying Cauchy–Schwarz and Young’s inequalities gives

d
dt

||u1 ||2+n |Au1 |2 [
1
n

|f|2 (2.17)

which upon integrating in time yields

||u1(t)||2+n F
t

0
|Au1(y)|2 dy [ ||u0 ||2+

1
n

F
t

0
|f(y)|2 dy.

After dropping the first term on the left, inequality (2.15) follows. L
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3. ANALYTICAL RESULTS FOR CONTINUOUS DATA

ASSIMILATION

We treat the continuous data assimilation equations (1.6) as a func-
tional differential equation in the same way that the Navier–Stokes equa-
tions (1.1) were treated in the previous section to arrive at the coupled
system

˛du1

dt
+nAu1+B(u1, u1)=f

du2

dt
+nAu2+B(u2, u2)=f+Pl(B(u2, u2) − B(u1, u1))

(3.1)

with initial conditions u1(0)=u0 and u2(0)=Plu0+g where u0 ¥ V and
g ¥ QlV.

The solution to Eq. (3.1) may be viewed as two solutions u1 and u2 to
the Navier–Stokes equations (2.6) with corresponding forcing f1 and f2

given by

f1=f and f2=f+Pl(B(u2, u2) − B(u1, u1)). (3.2)

Note that the forcing function f2 as defined above is actually the projection
with respect to Ps of the function defined by (1.7) in the introduction. Since
f2 is chosen in a complicated way depending on a feedback with u2, it is
not immediately clear that the second equation in (3.1) is globally well
posed. This issue is settled by

Theorem 3.1. Let T > 0 and l \ 0. If u0=u1(0) ¥ V, g=Qlu2(0)
¥ QlV, and f ¥ L2

loc((0, .); H) then (3.1) viewed as a system of functional
equations in H has a unique strong solution that satisfies

u i ¥ L.((0, T); V) 5 L2((0, T); D(A)) and
dui

dt
¥ L2((0, T); H)

(3.3)

for i=1, 2. Furthermore, the solutions are in C([0, T]; V) and depend
continuously on the initial data u0 and g in the V norm.

Proof. First we show existence of solutions. For u1 this result follows
from the classical theory of the Navier–Stokes equations given by
Theorem 2.2. For u2 we use the Galerkin method. Let Pn be the nth
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Galerkin projector and assume that n is large enough that PlH ı PnH. The
solution un

2 to the finite-dimensional Galerkin truncation of the second
equation in (3.1) satisfies

dun
2

dt
+nAun

2+PnB(un
2, un

2)=Pn f+Pl(B(un
2, un

2) − B(u1, u1)). (3.4)

Solutions to this ordinary differential equation exist for short times since
the nonlinearity is locally Lipshitz. Long time existence follows from the
estimates we will provide shortly. Moreover, since these estimates are
uniform in n, the compactness theorems of Aubin (1) can be used to extract
subsequences as n Q . in such a way that un

2 converges to a solution to
(3.1) satisfying (3.3). Further details may be found, for example, in refs. 9,
16, 39, or 40 and 41. As these techniques are well known, we shall content
ourselves here with a formal calculation that could be made rigorous if so
desired.

In the estimates that follow, we denote the Galerkin solution un
2 to

(3.4) by u2 for notational simplicity. Since u1 ¥ C([0, T]; V) then there
exists M1 large enough that ||u1(t)|| [ M1 for all t. The low modes Plu2(t)
are bounded in any norm since all finite dimensional norms are equivalent
and Plu2(t)=Plu1(t). In particular, the Poincaré inequality (2.4) implies
that

|APlu2(t)|=|APlu1(t)| [ l1/2 ||Plu1(t)|| [ l1/2 ||u1(t)|| [ l1/2M1. (3.5)

In the case that f is time independent then there are uniform estimates on
|Au1(t)| for u1 on the attractor, see, for example, refs. 9, 16, 39, or 40
and 41. In this case we could bound |APlu2(t)| independently of l.

Estimate the high modes Qlu2(t) by taking the inner products of (3.4)
with AQlu2 to obtain

1
2

d
dt

||Qlu2 ||2+n |AQlu2 |2=(f, AQlu2) − (B(u2, u2), AQlu2). (3.6)

The first term on the right side may be estimated using Cauchy–Schwarz
and Young’s inequalities as

(f, AQlu2) [
2
n

|f|2+
n

8
|AQlu2 |2.
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To estimate the second term use (2.9) and the bi-linearity repeatedly to
obtain

−(B(u2, u2), AQlu2)=(B(u2, u2), APlu2)

=(B(Plu2, u2), APlu2)+(B(Qlu2, u2), APlu2)

=(B(Qlu2, Plu2), APlu2)

+(B(Plu2, Qlu2), APlu2)+(B(Qlu2, Qlu2), APlu2).

Now (2.13) and (2.3) followed by Young’s inequality and then (3.5) yields

|(B(Qlu2, Plu2), APlu2)| [ c1 |Qlu2 |1/2 ||Qlu2 ||1/2 ||Plu2 ||1/2 |APlu2 |3/2

[ c1l−3/4 |AQlu2 | ||Plu2 ||1/2 |APlu2 |3/2

[
2c2

1

nl3/2 ||Plu2 || |APlu2 |3+
n

8
|AQlu2 |2

[
2c2

1M4
1

n
+

n

8
|AQlu2 |2.

The inequalities (2.13), (2.3), and (2.5) followed by Young’s inequality and
(3.5) yields

|(B(Plu2, Qlu2), APlu2)| [ c1 |Plu2 |1/2 ||Plu2 ||1/2 ||Qlu2 ||1/2 |AQlu2 |1/2 |APlu2 |

[ c1l−1/4 |Plu2 |1/2 ||Plu2 ||1/2 |APlu2 | |AQlu2 |

[ c1l−1/4l−1/4
1 ||Plu2 || |APlu2 | |AQlu2 |

[
2c2

1

nl1/2l1/2
1

||Plu2 ||2 |APlu2 |2+
n

8
|AQlu2 |2

[ 12c2
1M4

1

n
2 l1/2

l1/2
1

+
n

8
|AQlu2 |2.

Finally (2.13) and (2.3) followed by Young’s inequality and (3.5) yields

|(B(Qlu2, Qlu2), APlu2)| [ c1 |Qlu2 |1/2 ||Qlu2 || |AQlu2 |1/2 |APlu2 |

[ c1l−1/2 ||Qlu2 || |AQlu2 | |APlu2 |

[
2c2

1

nl
||Qlu2 ||2 |APlu2 |2+

n

8
|AQlu2 |2

[
2c2

1M2
1

n
||Qlu2 ||2+

n

8
|AQlu2 |2.
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It follows that (3.6) becomes

d
dt

||Qlu2 ||2+n |AQlu2 |2 [
4c2

1M2
1

n
||Qlu2 ||2+

4
n

|f|2+b1 (3.7)

where the constant

b1=
4c2

1M4
1

n
31+

l1/2

l1/2
1

4 .

Applying (2.3) to the second term on the left of (3.7) and regrouping yields

d
dt

||Qlu2 ||2+3nl −
4c2

1M2
1

n
4 ||Qlu2 ||2 [

4
n

|f|2+b1.

This inequality may be written

dt

dt
+b2t [

4
n

|f|2+b1 (3.8)

where

b2=nl −
4c2

1M2
1

n
and t=||Qlu2 ||2.

Gronwall’s inequality applied to (3.8) yields that

t(t) [ t(0) e−b2t+
b1

b2
(1 − e−b2t)+

4
n

F
t

0
|f(s)|2 e−b2(t − s) ds. (3.9)

Since f ¥ L2
loc((0, .); H) it follows that ||Qlu2(t)||2 is bounded for any

interval [0, T]. Hence u2 ¥ L.((0, T); V).
Next we show u2 ¥ L2((0, T); D(A)). Let M2 be the bound exhibited

above such that ||u2(t)||2 [ M2 for all t in [0, T]. Substituting this bound
into (3.7) one obtains

d
dt

||Qlu2 ||2+n |AQlu2 |2 [
4
n

|f|2+b3 (3.10)

where

b3=
4c2

1M2
1M2

2

n
+b1.
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Gronwall’s inequality applied to (3.10) yields

||Qlu2(t)||2+n F
T

0
|AQlu2 |2 [ ||Qlu2(0)||2+

4
n

F
T

0
|f|2+Tb3.

Upon dropping the first term on the left and majorizing the first term on
the right by M2

2 it follows that

F
T

0
|AQlu2 |2 [

1
n
3M2

2+
4
n

F
T

0
|f|2+Tb3

4 .

Therefore u2 ¥ L2((0, T); D(A)).
The proof that du2/dt ¥ L2((0, T); H) proceeds in exactly the same

way as for the two-dimensional Navier–Stokes equations. The Galerkin
method then leads to the existence of solutions to (3.1) satisfying (3.3).

Next, we show that such solutions are unique and depend continu-
ously on the initial data. Let u i and vi be two solutions to (3.1) satisfying
(3.3) for i=1, 2 with initial conditions in V such that Plu1(0)=Plu2(0)
and Plv1(0)=Plv2(0). Let the constants M1 and M2 be chosen large
enough so that ||u i(t)|| [ Mi and ||vi(t)|| [ Mi for i=1, 2 and almost every t
in [0, T]. Let wi=ui − vi. Since u1 and v1 are solutions to the standard two-
dimensional Navier–Stokes equations, then Theorem 2.2 implies

||w1(t)||2 [ k(t) ||w1(0)||2 for t \ 0 (3.11)

for some continuous monotone increasing function k(t) with k(0)=1. To
obtain similar estimates on w2, subtract the equation for v2 from the equa-
tion for u2. Thus,

dw2

dt
+nAw2=Pl(B(v1, v1) − B(u1, u1))+Ql(B(v2, v2) − B(u2, u2)).

Introducing + PlB(v1, u1) and + PlB(v2, u2) on the right side yields

dw2

dt
+nAw2=−Pl(B(v1, w1)+B(w1, u1)) − Ql(B(v2, w2)+B(w2, u2)).

Since w2 ¥ L2(0, T; D(A)) and dw2/dt ¥ L2(0, T; H) then the interpolation
lemma of Lions–Magenes (36) implies that

1dw2

dt
, Aw2

2=
1
2

d
dt

||w2 ||2.
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See also Corollary 7.3 in ref. 39 or Lemma 1.2 in ref. 40. Now, taking inner
products with Aw2 and using the fact that Plw2=Plw1 we obtain

1
2

d
dt

||w2 ||2+n |Aw2 |2= − (B(v1, w1), PlAw1) − (B(w1, u1), PlAw1)

− (B(v2, w2), QlAw2) − (B(w2, u2), QlAw2). (3.12)

By (2.12), (2.4), and (2.5) and then (3.11) we have

|(B(v1, w1), PlAw1)| [ |v1 |1/2 ||v1 ||1/2 ||w1 || |PlAw1 | ||PlAw1 ||

[
l3/2

l1/2
1

||v1 || ||w1 ||2 [
l3/2

l1/2
1

M1k(t) ||w1(0)||2.

Similarly we estimate

|(B(w1, u1), PlAw1)| [ |w1 |1/2 ||w1 ||1/2 ||u1 || |PlAw1 | ||PlAw1 ||

[
l3/2

l1/2
1

||u1 || ||w1 ||2 [
l3/2

l1/2
1

M1k(t) ||w1(0)||2.

Using (2.13), Young’s inequality and then (2.5) we estimate

|(B(v2, w2), QlAw2)| [ |v2 |1/2 ||v2 ||1/2 ||w2 ||1/2 |Aw2 |3/2

[ 1 3
2n
23 1

4
|v2 |2 ||v2 ||2 ||w2 ||2+

n

2
|Aw2 |2

[
27

32n3

M4
2

l1
||w2 ||2+

n

2
|Aw2 |2

and also

|(B(w2, u2), QlAw2)| [ |w2 |1/2 ||w2 ||1/2 ||u2 ||1/2 |Au2 |1/2 |Aw2 |

[
1
2n

|w2 | ||w2 || ||u2 || |Au2 |+
n

2
|Aw2 |2

[
1
2n

l−1/2
1 ||w2 ||2 ||u2 || |Au2 |+

n

2
|Aw2 |2

[
1
4n

||w2 ||2 3M2
2+

1
l1

|Au2 |24+
n

2
|Aw2 |2.
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Substituting these estimates into (3.12) we obtain

d
dt

||w2 ||2 [ b4 ||w1(0)||2+b5 ||w2 ||2 (3.13)

where

b4(t)=4
l3/2

l1/2
1

M1k(t) and b5(t)=
1
2n
327M4

2

8n2l1
+M2

2+
1
l1

|Au2(t)|24 .

Gronwall’s inequality applied to (3.13) yields that

||w2(t)||2 [ ||w2(0)||2 exp 3F
t

0
b5(s) ds4

+||w1(0)||2 F
t

0
b4(y) exp 3F

t

y

b5(s) ds4 dy.

Since u2 ¥ L2((0, T); D(A)) then continuity with respect to the initial condi-
tions follows. In particular, solutions of (3.1) satisfying (3.3) are unique. L

Note that the bounds in (3.9) are not uniform in time unless b2 > 0.
This implies that l must be sufficiently large for us to prove that the system
(3.1) is dissipative. A slightly sharper result than the one which results from
the above observation appears as Theorem 3.5 at the end of this section.

The uniqueness given by Theorem 3.1 guarantees that if u1(t) and
u2(t) happen to agree at some point in time, then they will remain equal for
all subsequent times. In particular, if g=Qlu0 then u1(t)=u2(t) for all t.
The following lemma establishes bounds on the convergence of continuous
data assimilation in terms of time averages of the reference calculation u1.
As l increases, the resolution of the measurements becomes finer. There-
fore, we expect that u2(t) becomes a better and better approximation of
u1(t) as l Q ..

Lemma 3.2. Let u1(t) and u2(t) be the unique strong solutions to
(3.1) with u0=u1(0) ¥ V, g=Qlu2(0) ¥ QlV, and f ¥ L2

loc((0, .); H) given
by Theorem 3.1. Then

|u1(t) − u2(t)|2 [ |u1(0) − u2(0)|2 exp 3− nlt+
c2

1

n
F

t

0
||u1(y)||2 dy4 (3.14)

and

||u1(t) − u2(t)||2 [ ||u1(0) − u2(t)||2 exp 3− nlt+
c2

1

nl
F

t

0
|Au1(y)|2 dy4 . (3.15)
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Proof. Let d=u1 − u2. Subtract the second equation in (3.1) from
the first to obtain

dd

dt
+nAd+Ql(B(u1, u1) − B(u2, u2))=0. (3.16)

Introduce + QlB(u2, u1) and further introduce ± QlB(u1, d) into (3.16) to
obtain

dd

dt
+nAd+Ql(B(d, u1)+B(u1, d) − B(d, d))=0. (3.17)

We shall make two estimates showing the convergence of d to zero. First,
we find conditions under which |d(t)| Q 0 as t Q ., and second, we find
conditions under which ||d(t)|| Q 0 as t Q ..

We obtain estimates on |d| by multiplying (3.17) by d and integrating.
Since Qld=d it follows from (2.8) that

1
2

d
dt

|d|2+n ||d||2+(B(d, u1), d)=0. (3.18)

Inequality (2.12) followed by Young’s inequality yields

|(B(d, u1), d)| [ c1 |d| ||d|| ||u1 || [
c2

1

2n
|d|2 ||u1 ||2+

n

2
||d||2. (3.19)

Substituting (3.19) into (3.18) one obtains

d
dt

|d|2+n ||d||2 [
c2

1

n
|d|2 ||u1 ||2.

Applying (2.3) to the second term on the left yields

d
dt

|d|2+3nl −
c2

1

n
||u1 ||24 |d|2 [ 0. (3.20)

Now, Gronwall’s inequality yields

|d(t)|2 [ |d(0)|2 exp 3− nlt+
c2

1

n
F

t

0
||u1(y)||2 dy4 .
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Next, we obtain estimates on ||d|| by taking the L2 inner product of
(3.17) with Ad. Since QlAd=Ad it follows from (2.9) that

1
2

d
dt

||d||2+n |Ad|2+(B(u1, d), Ad)+(B(d, u1), Ad)=0.

Further applying (2.10) one obtains

1
2

d
dt

||d||2+n |Ad|2=(B(d, d), Au1). (3.21)

Estimate using (2.12) followed by (2.3) and then Young’s inequality as

|(B(d, d), Au1)| [ c1 |d|1/2 ||d|| |Ad|1/2 |Au1 |

[ c1l−1/2 ||d|| |Ad| |Au1 |

[
c2

1

2nl
||d||2 |Au1 |2+

n

2
|Ad|2.

Then substitute this estimate into (3.21) to obtain

d
dt

||d||2+n |Ad|2 [
c2

1

nl
||d||2 |Au1 |2.

Applying (2.3) to the second term on the left yields

d
dt

||d||2+3nl −
c2

1

nl
|Au1 |24 ||d||2 [ 0. (3.22)

Now, Gronwall’s inequality yields

||d(t)||2 [ ||d(0)||2 exp 3− nlt+
c2

1

nl
F

t

0
|Au1(y)|2 dy4 .

This finishes the proof of the lemma. L

Combining Lemma 3.2 with Lemma 2.4 we obtain rigorous conditions
on l in terms of f and n which ensure that continuous data assimilation
works. Namely, we prove the following version of Theorem 1.5.

Theorem 3.3. Let

M1=3 sup
t > 0

1
t

F
t

0
||f(y)||2

g dy4
1/2

and M2=3 sup
t > 0

1
t

F
t

0
|f(y)|2 dy4

1/2

.
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Then, given a bounded subset B0 … V and f ¥ L2
loc((0, T); H) with

M2 < ., there exists K1 and K2 large enough such that for every
u0=u1(0) ¥ B0 and g=Qlu2(0) ¥ QlV the solutions u1(t) and u2(t) to (3.1)
satisfy

(i) If there exists a such that 0 < 2a [ nl − c2
1n−3M2

1 then

|u1(t) − u2(t)| [ |u1(0) − u2(0)| K1e−at for t \ 0.

(ii) If there exists a such that 0 < 2a [ nl − c2
1(n3l)−1 M2

2 then

||u1(t) − u2(t)|| [ ||u1(0) − u2(0)|| K2e−at for t \ 0.

Proof. Let d=u1 − u2. To estimate |d(t)| substitute (2.14) from
Lemma 2.4 into (3.14) from Lemma 3.2 to obtain

|d(t)|2 [ |d(0)|2 exp 3− nlt+
tc2

1

n
1 1

nt
|u0 |2+

1
n2 M2

1
24

[ |d(0)|2 exp 3c2
1

n2 |u0 |24 exp 31−nl+
c2

1

n3 M2
1
2 t4 .

It follows that, if 0 < 2a [ nl − c2
1n−3M2

1 then |d(t)| [ |d(0)| K1e−at where K1

is chosen large enough such that

K1 \ exp 3 c2
1

2n2 |u0 |24 for all u0 ¥ B0.

To estimate ||d(t)|| substitute (2.15) from Lemma 2.4 into (3.15) from
Lemma 3.2 to obtain

||d(t)||2 [ ||d(0)||2 exp 3− nlt+
tc2

1

nl
1 1

nt
||u0 ||2+

1
n2 M2

2
24

[ ||d(0)||2 exp 3 c2
1

n2l
||u0 ||24 exp 31−nl+

c2
1

n3l
M2

2
2 t4 .

It follows that, if 0 < 2a [ nl − c2
1(n3l)−1 M2

2 then ||d(t)|| [ ||d(0)|| K2e−at

where K2 is chosen large enough such that

K2 \ exp 3 c2
1

2n2l
||u0 ||24 for all u0 ¥ B0.

This finishes the proof. L
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Corollary 3.4. Under the hypothesis of Theorem 3.3 the approxi-
mation u2 converges to u1 in L.([0, .]; V) as l Q ..

Proof. Since K2 in Theorem 3.3 may be chosen independently of l

then

||u1(t) − u2(t)|| [ ||u1(0) − u2(0)|| K2e−at [ K2 ||Ql(u0 − g)|| Q 0

as l Q .. L

Proof of Theorem 1.5. Notice in the case f is time-independent
that M1=||f||g and M2=|f| in Theorem 3.3. The proof of Theorem 1.5
then follows from Theorem 3.3 and the fact that the global attractor of
(2.6) is bounded in V. L

Note that any bounds on the critical value of l for which continuous
data assimilation works must remain invariant under the scaling presented
in (1.8) in order to be sharp. Since all wave numbers in the original Fourier
space are doubled upon setting ũ1(x, t)=2u1(2x, 4t) and f̃(x)=8f(2x),
then the observational measurements Pl̃ ũ1(t) are equivalent to Plu1(t)
exactly when l̃=4l.

Assume, first, that there is a bound on l in terms of ||f||g which is
sharp. In particular, suppose l ’ C ||f||b

g for some constants C and b.
Since ||f̃||g=4 ||f||g then rewriting l̃ ’ C ||f̃||b

g in terms of l and f yields
4l ’ 4bC |f|b. It follows that b=1 and therefore l ’ C ||f||g. However, the
first bound in Theorem 3.3 depends on ||f||2

g, therefore it could not be
sharp. Similarly, if l ’ C |f|b, then rescaling l̃ ’ C |f̃|b yields 4l ’

C8b |f̃|b. It follows, in this case, that b=2/3 and so l ’ C |f|2/3. Thus,
both of the results in Theorem 3.3 are only upper bounds.

We end this section with a result on the dissipativity of the continuous
data assimilation equations (3.1). Whether this system of equations is dis-
sipative for all, in particular smaller, values of l appears to be an interest-
ing open question.

Theorem 3.5. Given forcing f ¥ H and provided that l satisfies
(1.10), then the system of equations (3.1) is dissipative and has an absorb-
ing ball in V.

Proof. Since u1 satisfies the usual two-dimensional Navier–Stokes
equations with forcing f ¥ H then it has an absorbing ball in V. See, for
example, refs. 9, 16, 39, or 40 and 41. For u2 we use Theorem 3.3 to esti-
mate f2 and use that estimate to find an absorbing ball.
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Let d(t)=u1(t) − u2(t). Then (2.4) implies

|f1 − f2 | [ |PlB(u2, u2) − PlB(u1, u1)|

[ |PlB(d, d)|+|PlB(u1, d)|+|PlB(d, u1)|

[ l3/2{||B(d, d)||−3+||B(u1, d)||−3+||B(d, u1)||−3}.

For w ¥ V3 the Sobolev embedding ||Nw||L. [ C ||w||3 yields the estimates

|OB(d, d), wP|=|OB(d, w), dP| [ ||Nw||L. |d|2 [ C ||w||3 |d|2

|OB(u1, d), wP|=|OB(u1, w), dP| [ ||Nw||L. |u1 | |d| [ C ||w||3 |u1 | |d|

|OB(d, u1), wP|=|OB(d, w), u1P| [ ||Nw||L. |u1 | |d| [ C ||w||3 |u1 | |d|.

If l satisfies inequality (1.10) then Theorem 3.3 implies |d(t)| Q 0 as t Q ..
Thus,

|f1 − f2 | [ Cl3/2{|d|2+2 |u1 | |d|} Q 0 as t Q .. (3.23)

This implies that f2 has the same asymptotic bounds in time as f.
Now, Theorem 3.3 implies that for any bounded subset B0 … V there

exists a time s > 0 such that for every u0 ¥ B0 and g ¥ QlV the correspond-
ing f2 obeys

|f2(t)| [ 2 |f| for t > s.

Let

B1={u2(s): u0 ¥ B0 and g ¥ QlB0}.

Continuous dependence on the initial data given by Theorem 3.1 implies
that B1 is bounded in V. Denote that bound by M1. We now estimate
||u2(t)||.

Multiply the second equation in (3.1) by Au2 to obtain

1
2

d
dt

||u2 ||2+n |Au2 |2=(f2, Au2).

Applying Cauchy–Schwarz and Young’s inequalities gives

d
dt

||u2 ||2+n |Au2 |2=
1
n

|f2 |2.
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Applying the Poincaré inequality (2.5) to the second term on the right
yields

d
dt

||u2 ||2+nl1 ||u2 ||2=
1
n

|f2 |2

and integrating over the interval [s, t] one obtains

||u2(t)||2 [ ||u2(s)||2 e−nl1(t − s)+
1
n

F
t

s
e−nl1(t − y) |f2(y)|2 dy

[ M2
1e−nl1(t − s)+

2 |f|2

n2l1
{1 − e−nl1(t − s)}.

Therefore, there exists T > s large enough such that for every u0 ¥ B0 and
g ¥ QlB0 the solution u2 to the second equation in (3.1) satisfies

||u2(t)||2 [
3 |f|2

n2l1
for t > T.

Thus, Eqs. (3.1) are dissipative. L

Note that (3.23) shows in the case of continuous data assimilation that
|u1(t) − u2(t)| Q 0 as t Q . implies |f1(t) − f2(t)| Q 0 as t Q .. This same
implication does not hold for two solutions u1 and u2 of the Navier–Stokes
equations with respective time-dependent forcing functions f1 and f2 in
general. Consider the following simple example. Let

u1=1 0
(t+1)−1 sin(t+1)2

2 cos(x)

and

u2=1 (t+1)−1 cos(t+1)2

0
2 cos(y).

Then u1 and u2 are solutions of (2.6) with

f1=1 0
2 cos(t+1)2 − (t+1)−2 sin(t+1)2+n(t+1)−1 sin(t+1)2

2 cos(x)

and

f2=1 − 2 sin(t+1)2 − (t+1)−2 cos(t+1)2+n(t+1)−1 cos(t+1)2

0
2 cos(y).
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Clearly ||u1(t) − u2(t)||a Q 0 as t Q . for any a, however

|f1 − f2 |2=|f1 |2+|f2 |2 ’ 4 as t Q ..

Therefore, |f1(t) − f2(t)| need not converge to zero as t Q . even
though ||u1(t) − u2(t)||a Q 0 as t Q . for any a. This implies that
Theorems 1.4, 1.5, and 3.3 cover situations where the hypothesis of
Theorem 1.3 are violated. Similar examples can be constructed using
spatial oscillations whose length scales decrease over time. For these
examples ||u1 − u2 || Q 0, but |Ql f1 − Ql f2 | does not converge to zero for
any l.

4. NUMERICAL RESULTS

In this section we study numerically how the length scales present in
the forcing function f affect the rate of continuous data assimilation and
the number of determining modes. It is worth mentioning that almost
all the previous analytical studies concerning the number of degrees of
freedom in turbulent flow have focused on the Grashof number and almost
none have addressed the effect of the spatial structure of the forcing on the
dynamics. However, there were some computational results that took the
structure of the forcing into consideration. See, for example, the work of
Marchioro, (37) Jolly, (29) Platt et al., (38) and references therein.

Let G(R) and F(lf) be as given in the introduction. Thus, G(R) is
the set of all time-independent forcing functions f with Grashof number
Gr(f)=R and F(lf) is the subset of G(R) consisting of the time-inde-
pendent forcing functions that are supported on an annulus in Fourier
space centered at lf of the form (1.11). All computational experiments
were performed with n=0.0001 and g=0 on the 2p-periodic torus for
forcing functions with a Grashof number of R=250000. Our computatio-
nal results consist of two sets of experiments.

For our first experiment we select functions from F(lf) for values of
lf ranging from 25 through 625. We work in the vorticity representation.
Thus, any f ¥ F(lf) may be specified in terms of g=N × f according to

f̂k=
ĝk

k2
1+k2

2

5− ik2

ik1

6 where g= C
lm [ |k|2

[ lM

ĝkfk. (4.1)

To obtain a representative function f ¥ F(lf) for each value of lf under
consideration, we take the Fourier coefficients gk to be Gaussian distrib-
uted, subject to the reality condition ĝk=ĝ−k and normalized so that
|f|=0.0025.
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Fig. 1. Evolution of ||u1 ||, |u1 |, and ||u1 ||g for lf=25 shows that initial data for the continu-
ous data assimilation experiment is very close to the global attractor.

The initial condition u0 for each continuous data assimilation experi-
ment was chosen so that it faithfully reflects the long term energetics of the
forcing. This was done by integrating the Navier–Stokes equations (2.6)
starting at time t=−25000 with u1(−25000)=0 until time t=0. Figure 1
shows the time evolution of ||u1 ||, |u1 |, and ||u1 ||g for a forcing function with
lf=25. By the end of the run these quantities have reached their statisti-
cally stationary states. Thus, one can assume that u0=u1(0) is on the
attractor. We note that as long as u0 reflects the long term energetics of the
forcing the exact method of its choice is not important.

Given a particular forcing function and initial condition u0 the data
assimilation parameter l for Pl in (3.1) was then varied to determine its
effect on the time evolution of ||u1 − u2 ||. As suggested by the bounds in
Theorem 3.3 and illustrated in Fig. 2, convergence, when it occurs, is
exponential in time. Although convergence is not always monotonic, it is,
on average, exponential. Therefore, a least squares fit of A exp(−at) to
||u1 − u2 || was made for each computation to obtain the rate of continuous
data assimilation a. Values of a as a function of l are given in Fig. 3 for the
experiments with lf [ 361 and in Fig. 4 for the experiments with lf \ 361.

To provide a definite numerical criterion for deducing the number of
determining modes, let lc be the smallest value of l for which the corre-
sponding rate of continuous data assimilation a satisfies a \ 0.0005. We
take the number of determining modes Nc to be the rank of Pl for l=lc.
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Fig. 2. Evolution of ||u1 − u2 || with lf=64 for continuous data assimilation on N Fourier
modes. Convergence, when it occurs, is exponential in time.

Fig. 3. Rate of continuous data assimilation for forcing supported on length scales between
lf=25 and 361. The horizontal line at a=0.0005 represents the cutoff for deducing the
number of determining modes.
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Fig. 4. Rate of continuous data assimilation for forcing supported on length scales between
lf=361 and 625. The horizontal line at a=0.0005 represents the cutoff for deducing the
number of determining modes.

Table I summarizes how the number of determining modes depends on the
length scales present in the forcing. Notice that the number of determining
modes increases as lf increases from 25 through 361 but then decreases as
lf increases from 361 through 625. We remark that the distances between
successive values of lf have been chosen to be spaced far enough apart to
guarantee that ||f||g will decrease monotonically as lf increases.

To compare these results with our theory, substitute (1.12) into (1.10)
and use the bounds on c1 given in Lemma 2.3 to obtain

lc [ min{c2
1n−4 ||f||2

g , c1n−2 |f|}

[ c1n−2 |f| min{c1n−2 |f| (l1/2
f − 1)−2, 1}

[ 539789 min{539789(l1/2
f − 1)−2, 1}.

Table I. The Relationship between the Parameter l f in the Forcing, lc, and the

Number of Determining Modes Nc

lf 25 64 121 169 256 361 484 529 576 625

lc 4 13 26 49 73 82 73 65 27 10
Nc 12 44 88 148 232 260 232 212 88 36
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Hence, when lf \ 541260 the first term in the minimum dominates, and
our analytical bound on lc and consequently on Nc decreases as lf increa-
ses. In particular, our analytical estimate on the number of determining
modes reaches zero for lf large enough. Although our computational
estimates are much smaller and start decreasing long before our theoretical
bounds do, it seems reasonable that the observed decrease in number of
determining modes when forcing on smaller and smaller scales is still
explained by the smallness of the VŒ norm of f when lf is large.

Something unexplained by our analysis appears to be happening for
values of lf between 25 and 361. The number of determining modes
increases as lf increases. In an intuitive sense, this can be seen as an
extrapolation of the fact that when lf=0.7 Theorem 1.7 implies that the
dynamics are trivial. To shed further light on this case let us first examine
the energy spectra of the reference calculations. Let

E(r)=L2 C
k ¥ Jr

|ûk |2

where Jr={k ¥ J : r − 1/2 < |k| [ r+1/2} and define

OE(r)P= lim
T Q .

1
T

F
T

0
E(r) dt.

The average energy spectrum of the reference calculation u1 corresponding
to each of the forcing functions in Table I is shown in Fig. 5. Here we have
estimated the limit at T Q . by taking T=10000. Note that as lf increases,
the amount of energy in the high modes increases and a peak around
lf becomes apparent. Also note that the total energy in the low modes
decreases as lf increases.

Thus, there are two plausible explanations for the observed increase
in the number of determining modes as lf ranges from 25 to 361. This
increase might be caused by an increases of energy in the high modes of u1

or it might be caused by a decrease of energy in the low modes. If we
suppose that the small scales are generated from the large scales, then a
decrease of energy in the low modes would leave less large scale motion to
generate the small scales, and therefore lead to an increase in the number of
determining modes. To test this hypothesis a second set of experiments was
conducted.

Given fL ¥ F(25) and fH ¥ F(484) we set f=hL fL+hH fH where
h2

L+h2
H=1. In this way we obtain forcing functions that are supported

on two disjoint annuli in Fourier space—one on small wave numbers, the
other on large. Here hL and hH are parameters determining the relative
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Fig. 5. Time averages of the energy spectrum of u1 show a characteristic peak around lf for
forcing functions supported on small length scales. The average was computed by taking
T=10000.

Fig. 6. Rate of continuous data assimilation for the forcing function f=hL fL+hH fH

where fL ¥ F(25) and fH ¥ F(484). The horizontal line at a=0.0005 represents the cutoff
for deducing the number of determining modes.
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Table II. The Relationship between the Weights hL and hH in the

Forcing, l c, and the Number of Determining Modes Nc

hL 0 0.080 0.160 0.320 0.768 1
hH 1 0.997 0.987 0.947 0.640 0

lc 73 37 26 13 5 4
Nc 232 120 88 44 20 12

weights of the large and small length scales in the forcing. When hH is close
to zero f may be viewed as the perturbation of the large scales fL by the
small scales fH; when hL is close to zero f is the perturbation of the small
scales fH by the large scales fL. The values of a for these computations
are presented graphically in Fig. 6. Table II indicates how the number of
determining modes depends on hL and hH. Note that the perturbation of
the large scales fL by the small scales fH does not significantly change the
number of determining modes, whereas the perturbation of the small scales
fH by the large scales fL dramatically affects the number of determining
modes. This is consistent with our hypothesis that it is the absence of the
large scales in the forcing which are primarily responsible for the increase
in number of determining modes as lf ranges from 25 through 361 in the
first set of experiments.

Further evidence in support of this hypothesis may be obtained by
examining the averaged energy spectrum in Fig. 7 of the reference calcula-
tion u1 corresponding to each of the forcing functions in Table II. The
most dramatic changes in the number of determining modes corresponds
primarily to changes in the energy of the low modes of the energy spectrum.

It is amusing to note that the first three columns in Table II are quali-
tatively unchanged by taking hH=1 in each of them. In this case we obtain
a sequence of forcing functions that increases in all norms while at the
same time the corresponding number of determining modes decrease.
A discussion of this seeming paradox and an explanation for it in terms of
a Reynolds number based on the observational measurements Plu1(t) shall
be explored, if efficable, in a future work.

5. COMPUTATIONAL METHODS

Numerical computations for this paper were carried out using a C
code written by the authors in conjunction with the Fourier transform
library of Frigo and Johnson. (26) The actual calculations were made
on microcomputers running the GNU/Linux operating system and
LAM/MPI at the University of Nevada, Reno and at the University of
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Fig. 7. Time averages of the energy spectrum of u1 for f=hL fL+hH fH where fL ¥ F(25)
and fH ¥ F(484). The average was computed by taking T=10000.

California, Irvine. Correct behavior of our code was verified by compari-
son to existing programs written by Mike Jolly and Stephen Montgomery.

We use a spectral Galerkin method and compute the two-dimensional
incompressible Navier–Stokes equations in its vorticity form

“w

“t
− n Dw+(u · N) w=g (5.1)

where w=N × u and g=N × f. Note that the one-third rule was used to
avoid aliasing, see Canuto et al. (3) In terms of its Fourier decomposition
(5.1) becomes

dŵk

dt
+n |k|2 ŵk+ik · uw5k=ĝk. (5.2)

Following Henshaw, Kreiss, and Reyna in ref. 27, we integrate the dissipa-
tive term explicitly to obtain

d
dt

{ŵk exp(n |k|2 t)}+ik · uw5k exp(n |k|2 t)=ĝk exp(n |k|2 t) (5.3)
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and then integrate the remaining terms using a third order Adams–
Bashforth scheme. Initial time steps are computed via a fourth order
Runge–Kutta scheme.

Let ŵ j denote the Fourier transformed vorticity at time tj=j Dt. Let

L=diag(..., n(k2
1+k2

2),...)

and

F(t, ŵ)=−ik · uw5k+ĝk.

Using these notations, the fourth order Runge–Kutta scheme used in our
calculations may be written

K1=F(tj, ŵ j)

K2=F(tj+Dt/2, e−L Dt/2(ŵ j+K1 Dt/2))

K3=F(tj+Dt/2, e−L Dt/2ŵ j+K2 Dt/2)

K4=F(tj+Dt, e−L Dtŵ j+e−L Dt/2K3 Dt)

ŵ j+1=e−L Dtŵ j+(Dt/6)(e−L DtK1+2e−L Dt/2(K2+K3)+K4)

and the third order Adams–Bashforth scheme may be written

ŵ j+1=e−L Dtŵ j+
Dt
12

{23e−L DtF(tj; ŵ j) − 16e−2L DtF(tj − 1, ŵ j − 1)

+5e−3L DtF(tj − 2, ŵ j − 2)}.

In our analysis, the forcing function f and the dynamical equations
governing the evolution of u1 were assumed to be known exactly.
Furthermore, the observable measurements Plu1(t) were assumed to be
error free. Therefore, if u1(t) and u2(t) happen to be equal at any time t,
then they will remain equal for all subsequent times.

We would like our numerical computations to reflect these assump-
tions as closely as possible. To ensure our computations of u1 and u2 are
identical, we discretize the equations governing u1 and u2 in exactly the
same way and use the same executable program to compute each solution.
This avoids any variations in automatic compile-time optimizations.
Furthermore, we explicitly specify the processor dependent run-time opti-
mizations used by the Fourier transform library. (26) Additional care was
taken when implementing the continuous data assimilation to ensure that
the exact values of Plu1 were used in a way that doesn’t affect the discrete
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dynamics. Thus, since we are using a three step method for the time
integrator, if the numerical solutions u1(t) and u2(t) are bit for bit equal at
any three consecutive times tj, tj − 1, and tj − 2, then they will remain bit for
bit equal for all subsequent times.

To ensure sufficient computational resolution and stability, the CFL
condition and the condition on the degrees of freedom in two-dimensional
turbulence given in ref. 27 were monitored for all computational runs. Let
n by n be the grid size in physical space and Dt be the size of the time step.
Let u and v be the x and y components of Eulerian velocity field. The CFL
condition may be expressed as

CFL=
n Dt
2L

sup
x ¥ W

{|u|+|v|} [ 1

and the condition on degrees of freedom may be expressed as

kmax=n−1/2 sup
x ¥ W

3 :“u
“x
: , : “v

“x
: , : “u

“y
: , : “v

“y
: 41/2

[
np

L
.

For our final calculations we took n=0.0001, L=2p, n=169, and
Dt=0.04. Thus, the Fourier transforms used to evaluate the nonlinear term
were performed on a 256 by 256 spatial grid. Given these parameters, our
final calculations obeyed

CFL [ 0.92 and kmax [ 82

and should, therefore, be well resolved.
Dependence of our numerical results on resolution was also studied

directly. It should be noted that our experiment involves integrating a
system with sensitive dependence on its initial conditions over a very long
period of time. Thus, given different values for n and Dt otherwise identical
calculations of u1 will differ after long enough time. Even for identical
values of n and Dt these calculations were observed to differ depending on
the compiler and level of optimization used. The best we can hope for is
that statistical properties including the rate of continuous data assimilation
and number of determining modes remain unchanged. A number of pre-
liminary tests with f, l, and u0 fixed were made to determine how our
results depend on the exact values of n and Dt. Figure 9 illustrates the
evolution of ||u1 − u2 || for a set of resolution tests. These tests were con-
ducted with the data assimilation parameter l=26 and the forcing func-
tion from Table I with lf=64. It is clear that the rate of continuous data
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Table III. Different Versions of Forcing Functions Supported on

the Length Scales around l f=64. The Rate a Was Measured for

Continuous Data Assimilation on N=88 Modes

Version ||f|| |f| ||f||g a

1 0.01928 0.0025 0.0003272 0.0105127
2 0.01905 0.0025 0.0003309 0.0102093
3 0.01921 0.0025 0.0003287 0.0099258
4 0.01923 0.0025 0.0003282 0.0104484
5 0.01919 0.0025 0.0003292 0.0112591

assimilation is independent of the resolution of the computation. Thus, we
hope that our results are reasonably free from numerical artifacts.

Recall that the amplitudes of the Fourier components of f were
chosen randomly with respect to a Gaussian distribution. Thus, our exact
choice of f for each experiment was somewhat arbitrary. Table III explores
for lf=64 how the randomness in our choice of Fourier components for f
affect the rate of continuous data assimilation. Notice that the V and VŒ

norms of f vary by about one percent while the resulting rate of continu-
ous data assimilation a varies by about three percent. We suppose all our
results are within this margin for any reasonably probable choice of f.

Fig. 8. Constant level curves of g=N × f for lf=64 illustrate the length scales present in
the forcing.
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Fig. 9. The evolution of ||u1 − u2 || for different values of n and Dt with l=26 and lf=64
shows that the rate of continuous data assimilation is unrelated to the numerical resolution.
The solid line represents the resolution of our final calculations. Other resolutions have been
offset by decades for clarity.

An essential feature of a typical forcing function is that the spatial
length scales are clearly exhibited while at the same time there are no addi-
tional symmetries. This feature is illustrated in Fig. 8 which gives the con-
stant level curves of N × f for the forcing function with lf=64 from
Table I. If, for example, f had additional periodic structure, then the initial
condition u0 and consequently u1 and u2 would also have this periodic
structure. Thus, a rescaling such as in (1.8) would be possible. One could
not expect the results from Table I to be relevant for such forcing functions.

One final remark is on our procedure for determining lc experimen-
tally. Recall that lc was defined to be the smallest value of l such that
a \ 0.0005. This cutoff was chosen simply so that the evolution of ||u1 − u2 ||
need not be computed for times much greater than t=25000 to distinguish
cases of convergence from nonconvergence. Therefore, it is possible that
smaller values of l would also show convergence. In such cases our lc still
provides an upper bound on the number of determining modes, only
perhaps not quite as sharp as possible.

6. CONCLUSIONS

We have studied a form of continuous data assimilation based on
spectral modes for the two-dimensional incompressible Navier–Stokes
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equations. Our work was inspired by the work of Browning et al. (2) and
Kreiss and Yström, (33) who studied this form of continuous data assimila-
tion in the case of zero body forcing. Our subject of interest has been how
the spatial structure of a nonzero body forcing affects the rate of continu-
ous data assimilation and the number of determining modes.

In our rigorous analysis we have shown that the equations governing
continuous data assimilation on spectral modes are well posed. Moreover,
we have found bounds on the number of spectral modes which guarantee
that the approximations obtained by continuous data assimilation converge
to the exact solution.

Our numerical simulations have shown that convergence actually
occurs for a number of spectral modes much less than the upper bounds
given by our rigorous results. Moreover, our simulations show an interest-
ing maximum in the number of determining modes as the spatial structure
of the forcing function is varied from large scales to small scales.

We finish by summarizing our explanation of this maximum. Forcing at
large scales creates large scale motion within the fluid that control the small
scale motion. In this case, only a few spectral modes are needed for contin-
uous data assimilation to converge. Forcing at intermediate scales creates a
turbulent flow but at the same time doesn’t create the energetic large scale
motion needed to control the small scales. In this case, continuous data
assimilation requires more spectral modes to converge. Finally, forcing at
very small scales creates no motion due to dissipation. In this case, no
spectral modes are needed for continuous data assimilation to converge.

As a follow up we plan to study continuous data assimilation for
random forces.
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